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Abstract—In this paper we study the tone reservation method
for reducing the peak to average power ratio (PAPR) in gen-
eral orthonormal transmission systems. We prove that strong
solvability, where the peak value of the transmit signal has to
be bounded by a constant times the energy of the information
symbols, is equivalent to weak solvability, where the peak value
of the transmit signal has to be only bounded. Further, we show
that in the case where the PAPR problem is not weakly solvable,
almost all information sequences lead to an unbounded transmit
signal.

Index Terms—Orthonormal transmission system, peak to av-
erage power ratio, tone reservation, weak solvability, strong
solvability

I. INTRODUCTION

FOR communication systems that target high spectral
efficiencies, multi waveform transmission methods, such

as OFDM and generalizations, are considered. Many of these
techniques are also a current research topic in the development
of 5G. One drawback of multi waveform schemes are large
peak values of the transmit signal, which might occur, depend-
ing on the information symbols to be transmitted. These high
signal values can be a problem for the hardware, in particular
the power amplifier.

A central factor in the design of future communication
systems is their efficiency in terms of energy consumption
during operation. Besides ecological considerations, a low
energy consumption is essential for the cost effectiveness of
operating a network. In general, the ambitions to reduce the
energy consumption in electrical systems led to the idea of
“green IT” several years ago. In view of the exponential
increase of the data that is transported in communication
networks, the importance of these questions will even increase.
However, many questions that are related to energy efficient
hardware design turned out to be challenging and only few of
the original goals have been achieved.

Our considerations are related to the efficiency of the power
amplifier in wireless communication systems. In theory one
often assumes an ideal amplifier characteristic, i.e., a linear
input-output behavior. In practice, however, such a behavior
cannot be realized at a reasonable cost. Outside an operating
range, where the amplifier can be considered to be linear,
the gain is reduced and the amplifier saturates. Large signal
values at the input can overload the amplifier, leading to signal
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distortion and out-of-band radiation [1]. Consequently, the
design of suitable waveform transmission schemes with small
peak to average power ratios (PAPRs) is an important task. For
the design of suitable waveforms, it is further vital to consider
the physical properties of the transmission channel as well as
the possibilities of the hardware for implementation.

Classical transmission schemes, such as orthogonal fre-
quency division multiplexing (OFDM) and code division mul-
tiple access (CDMA), suffer from large PAPRs [2]–[5]. For
future communication systems other, more general waveform
transmission schemes are discussed [6]. Large PAPR values,
however, are not specific to OFDM and CDMA systems, but
rather occur for arbitrary multi waveform schemes based on
bounded orthonormal systems (ONS). It is well known that
the PAPR of such signals can be as large as

√
N , where N

denotes the number of carriers [7].
In order to reduce the PAPR, several methods have been

proposed [8]–[12], among them the popular tone reservation
method [13]–[17], which we consider in this paper. In this
method, the set of available carriers is partitioned into two
sets, the first of which is used to carry the information
(information set), and the second of which to reduce the PAPR
(compensation set). In the tone reservation method only the
transmitter has to find the suitable compensation symbols. The
information set is known in advance to both the transmitter and
receiver, and therefore no additional coordination or informa-
tion exchange between transmitter and receiver is needed. The
receiver simply disregards the compensation symbols and uses
only the information symbols.

In the tone reservation method not the entire available
energy is used for the transmission of information, instead a
certain fraction is used for compensation, i.e., reduction of the
PAPR of the transmit signal. The reduced PAPR of the transmit
signal makes it possible to use more efficient power amplifiers
that save energy. Hence, from an energy perspective, there is
a trade-off, and to date a thorough quantitative analysis of this
trade-off is missing. A first step towards the development of
such an analysis, is a better theoretical understanding of the
tone reservation method.

Tone reservation is an elegant procedure and easy to define.
The practical implementation however is difficult. Little of
the available results are analytic in nature, and, to the best
of our knowledge, there exists no efficient algorithms for the
calculation of the compensation set for an arbitrary number of
carriers. Central questions in the context of tone reservation
are: What is the best possible reduction of the PAPR? What
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is the optimal information set that achieves this reduction,
and how can it be found? What is the general form of the
information set? There has been little theoretical work done
in this area and so far none of these questions could be fully
answered.

In order to tackle these questions it is important to under-
stand the structure of the problem. Two different solvability
concepts have been proposed: strong and weak solvability. The
concept of weak solvability was first discussed in Section 4.7
of the chapter “Mathematics of signal design for communica-
tion systems” in [18]. However, when [18] was published, it
was unclear how the PAPR problem behaves for the concept
of weak solvability. In [19] it was shown for OFDM that if the
PAPR problem is not weakly solvable, then the set of informa-
tion sequences for which the transmit signal is unbounded is
a residual set, regardless of the choice of b ∈ `2(K). Further,
it was proved in [19] that for OFDM both concepts—weak
and strong solvability of the PAPR problem—are equivalent.
In this paper, we generalize this result to arbitrary complete
ONSs. On the technical side, this generalization is far from
trivial. The proof in [19] exploited specific properties of the
system of exponentials that is used in OFDM, and therefore
does not work for arbitrary complete ONSs. Hence, in the
present paper, we need to use a completely different approach
for the proof. The generalization to arbitrary complete ONSs
is a significant step, because the development of orthogonal
transmission schemes is still ongoing, and other waveforms
than those employed in OFDM are actively considered in
modern standards, such as 5G [20].

In Section III we will explain the tone reservation method
in more detail, and in Section IV we introduce the concepts
of weak and strong solvability of the PAPR problem. Then
in Section V, we present our main result, the equivalence of
weak and strong solvability for arbitrary bounded complete
ONSs. In the Section VI, we apply the findings and show that
if the PAPR problem is not weakly solvable, then for a large
class of transmit signals the PAPR cannot be controlled, i.e.,
a compensation is not possible. This is the generic behavior,
because it occurs for “almost all” signals.

II. NOTATION

By Lp[0, 1], 1 ≤ p ≤ ∞, we denote the usual Lp-spaces
on the interval [0, 1], equipped with the norm ‖ · ‖Lp[0,1]. For
an index set I ⊂ Z, we denote by `2(I) the set of all square
summable sequences c = {ck}k∈I indexed by I. The norm is
given by ‖c‖`2(I) = (

∑
k∈I |ck|2)1/2. By |A| we denote the

cardinality of a set A, and by z the complex conjugate of a
complex number z.

The Rademacher functions rn, n ∈ N, on [0, 1] are defined
by rn(t) = sgn[sin(π2nt)], where sgn denotes the signum
function with the convention sgn(0) = −1. The Walsh
functions wn, n ∈ N, on [0, 1] are defined by

w1(t) = 1

and
w2k+m(t) = rk+1(t)wm(t)

for k = 0, 1, 2, . . . and m = 1, 2, . . . , 2k. Note that we use an
indexing of the Walsh functions that starts with 1. The Walsh
functions {wn}n∈N form an orthonormal basis for L2[0, 1].
For further details about the Walsh function, see for example
[21].

Further, we need the following concepts from metric spaces
[22]. A subset M of a metric space X is said to be nowhere
dense in X if the closure [M ] does not contain a non-empty
open set of X . M is said to be meager (or of the first category)
if M is the countable union of sets each of which is nowhere
dense in X . M is said to be nonmeager (or of the second
category) if it is not meager. The complement of a meager
set is called a residual set. According to Baire’s theorem
[22], in a complete metric space any residual set is dense
and nonmeager. Residual sets may be considered as “big” and
meager sets as “small”. Two properties that shows the richness
of residual sets are the following: the countable intersection
of residual sets is always a residual set; and any superset of a
residual set is a residual set. The small size of meager sets is
illustrated by the next two properties: The countable union of
meager sets is always a meager set; and any subset of a meager
set is a meager set. A rough analog in probability theory are
sets having probability one and sets having zero probability.

III. PROBLEM FORMULATION AND TONE RESERVATION

A. PAPR for Wave Form Transmission

We start our discussion with one-dimensional time signals,
as they appear in applications. Please note that our main
results, presented in Section V, hold in greater generality for
measure spaces, including multidimensional signals.

Without loss of generality, we can restrict ourselves to sig-
nals defined on the interval [0, 1]. Signals with other duration
can be simply scaled to be concentrated on [0, 1]. For a signal
s, we define

PAPR(s) =
‖s‖L∞[0,1]

‖s‖L2[0,1]
,

i.e., the PAPR is the ratio between the peak value of the
signal and the square root of the power of the signal. Since
‖s‖L2[0,1] ≤ ‖s‖L∞[0,1], we always have

PAPR(s) ≥ 1. (1)

Note that the PAPR is usually defined as the square of this
value. This however, from a mathematical point of view, makes
no difference for the results in this paper.

In the case of an orthogonal transmission scheme, using the
ONS {φk}k∈I ⊂ L2[0, 1], the PAPR of the transmit signal

s(t) =
∑
k∈I

ckφk(t), t ∈ [0, 1],

with coefficients c = {ck}k∈I , is given by

PAPR(s) =
‖
∑
k∈I ckφk‖L∞[0,1]

‖c‖`2(I)
,

because {φk}k∈I is a ONS, which implies that ‖s‖L2[0,1] =
‖c‖`2(I).

For an orthogonal transmission scheme, the peak value of
the signal s, and hence the PAPR, can become large, as the
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Fig. 1. Block diagram of a general orthogonal waveform transmission scheme
with tone reservation. In this example {φn}n∈N is a complete ONS, and we
have I = N, K = {1, . . . , N}, and K{ = N \ K.

following result shows. Given any system {φn}Nn=1 of N
orthonormal functions in L2[0, 1], then there exist a sequence
{cn}Nn=1 ⊂ C of coefficients with

∑N
n=1|cn|2 = 1, such that

‖
∑N
n=1 cnφn‖L∞[0,1] ≥

√
N [7].

For the OFDM case, where the complete ONS consists
of complex exponentials {eik · 2π}k∈Z and the CDMA case,
where the complete ONS is given by the Walsh functions
{wn}n∈N, this can be easily seen. For the sequence

cn =

{
1√
N
, 1 ≤ n ≤ N,

0, otherwise,

we clearly have
∑N
n=1|cn|2 = 1. In the OFDM case we have∥∥∥∥∥

N∑
n=1

cn eint2π

∥∥∥∥∥
L∞[0,1]

=
1√
N

max
t∈[0,1]

∣∣∣∣∣
N∑
n=1

eint2π

∣∣∣∣∣ =
√
N,

and in the Walsh case∥∥∥∥∥
N∑
n=1

cnwn

∥∥∥∥∥
L∞[0,1]

=
1√
N

∥∥∥∥∥
N∑
n=1

wn

∥∥∥∥∥
L∞[0,1]

=
√
N,

because
∑N
n=1 wn(t) = N for all t ∈ (0, 1/N).

The significance of tone reservation, which is illustrated in
Fig. 1, has already been discussed in the introduction. Next,
we introduce the method more precisely. Let {φk}k∈I be an
ONS in L2[0, 1]. We additionally assume that ‖φk‖∞ < ∞,
k ∈ I, i.e., we consider the practically relevant case of
bounded functions. In the tone reservation method, the index
set I is partitioned in two disjoint sets, the information set K
and the compensation set K{. The set K is used to carry the
information and the set K{ to reduce he PAPR. Note that the
set K can be finite or infinite. For a given information sequence
a = {ak}k∈K ∈ `2(K), the goal is to find a compensation

sequence b = {ak}k∈K{ ∈ `2(K{) such that the peak value of
the transmit signal

s(t) =
∑
k∈K

akφk(t)︸ ︷︷ ︸
=:A(t)

+
∑
k∈K{

bkφk(t)

︸ ︷︷ ︸
=:B(t)

, t ∈ [0, 1],

is as small as possible. A(t) denotes the signal part which
contains the information and B(t) the part which is used to
reduce the PAPR.

Note that we allow infinitely many carriers to be used for the
compensation of the PAPR. This is also of practical interest,
since the solvability of the PAPR problem in this setting is a
necessary condition for the solvability of the PAPR problem
in the setting with finitely many carriers.

B. General Complete ONS

In the remainder of this paper we generalize the problem
to ONSs on measure spaces. This includes multidimensional
signals but also one-dimensional signals as discussed in the
previous section.

Let Ω be a nonempty set, A a σ-algebra on the set Ω, and
µ a measure on (Ω,A), such that (Ω,A, µ) be a separable
measure space with µ(Ω) <∞. Without loss of generality we
will assume that µ is a probability measure, i.e., that µ(Ω) = 1,
because this avoids unpleasant normalization constants. For
1 ≤ p ≤ ∞, we set

Lp(µ) =
{
f measurable : ‖f‖Lp(µ) <∞

}
,

where

‖f‖Lp(µ) =

(∫
Ω

|f |p dµ

) 1
p

for 1 ≤ p <∞, and

‖f‖L∞(µ) = ess sup
t∈Ω

|f(t)|

for p =∞. By

ess sup
t∈Ω

g(t) = inf{M ∈ R : µ({t ∈ Ω: g(t) > M}) = 0}

we denote the essential supremum of a measurable function
g : Ω→ R. As usual, we identify two functions that are equal
µ-almost everywhere (a.e.). L2(µ) is a Hilbert space. Since
L2(µ) is separable, and L2(µ) is dense in L1(µ), it follows
that L1(µ) is separable.

Let {φn}n∈N be a complete ONS in L2(µ). Then, for all
f ∈ L2(µ), we have

lim
N→∞

∫
Ω

∣∣∣∣∣f −
N∑
n=1

an(f)φn

∣∣∣∣∣
2

dµ = 0,

where
an(f) =

∫
Ω

fφn dµ,

as well as
∞∑
n=1

|an(f)|2 =

∫
Ω

|f |2 dµ.
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IV. STRONG AND WEAK SOLVABILITY

Next we introduce two solvability concepts for the tone
reservation method. The difference of the two concepts lies
in the way how we control the peak value, i.e. the L∞ norm,
of the transmit signal. The first solvability concept, which was
formally introduced in [16], [23], is strong solvability.

Definition 1 (Strong solvability of the PAPR problem). For
an ONS {φk}k∈I in L2(µ) and a set K ⊂ I, we say that the
PAPR problem is strongly solvable with finite constant CEX,
if for all a ∈ `2(K) there exists a b ∈ `2(K{) such that∥∥∥∥∥∥

∑
k∈K

akφk +
∑
k∈K{

bkφk

∥∥∥∥∥∥
L∞(µ)

≤ CEX‖a‖`2(K). (2)

We call the PAPR problem strongly solvable if it is strongly
solvable for some finite constant CEX.

If the PAPR problem is strongly solvable then the peak value
of the transmit signal

s =
∑
k∈K

akφk︸ ︷︷ ︸
=:A

+
∑
k∈K{

bkφk︸ ︷︷ ︸
=:B

can be controlled, i.e., bounded from above by CEX‖a‖`2(K),
for all information sequences a ∈ `2(K). Note that we have

‖s‖2L2(µ) = ‖a‖2`2(K) + ‖b‖2
`2(K{)

(3)

because Parseval’s equality. It follows that

‖b‖2
`2(K{)

= ‖s‖2L2(µ) − ‖a‖
2
`2(K)

≤ ‖s‖2L∞(µ) − ‖a‖
2
`2(K)

≤ C2
EX‖a‖2`2(K) − ‖a‖

2
`2(K)

= (C2
EX − 1)‖a‖2`2(K), (4)

where we used (2) in the last inequality. Thus, the energy of the
compensation signal ‖B‖2L2(µ) = ‖b‖2

`2(K{)
is bounded from

above by a constant factor C2
EX − 1 times the energy of the

information signal ‖A‖2L2(µ) = ‖a‖2
`2(K{)

. As a consequence,
the constant CEX controls not only the peak value of the
transmit signal via (2), but also the energy of the compensation
signal via (4). For practical applications it is desirable to have
the minimum possible constant CEX in (2) as small as possible.
There is a natural lower bound on the minimum possible
constant CEX. Since

PAPR(s) =
‖s‖L∞(µ)

‖s‖L2(µ)
≤
CEX‖a‖L2(µ)

‖a‖L2(µ)
≤ CEX, (5)

we obtain from (1) that CEX ≥ 1. Finding the minimum
possible constant for a given ONS is a challenging task, which
has been solved only for very few ONSs, e.g., the Walsh ONS
(see Example 1). Note that the inequality (5) also shows that
the constant CEX is an upper bound on the PAPR value of s.

In [16], [18] an interesting alternative characterization of
strong solvability was given. In this characterization the set

F1(K) =

{
f ∈L1(µ) : f=

∑
k∈K

akφk for some {ak}k∈K⊂ C

}

plays an important role. The theorem is as follows.

Theorem 1. Let {φn}n∈N be a bounded complete ONS in
L2(µ), K ⊂ N, and CEX > 0. The PAPR problem is strongly
solvable for {φn}n∈N and K with constant CEX if and only if
we have

‖f‖L2(µ) ≤ CEX‖f‖L1(µ) (6)

for all f ∈ F1(K).

Remark 1. Theorem 1 was initially stated in [16], [18] for the
Lebesgue measure on the interval [0, 1] and not for general
measure spaces. However, a closer inspection of the proof
shows that it can easily generalized to separable probability
spaces (Ω,A, µ). For the “⇐” direction of the proof, the
Hahn–Banach theorem is needed and the fact that the dual
space of L1([0, 1]) is L∞([0, 1]). Both are equally true in
our probability space setting. The “⇒” direction follows
immediately without changes.

It is easy to show there exist infinite sets K ⊂ I for which
the PAPR is strongly solvable.

We will give two examples next.

Example 1. For the Walsh ONS {wn}n∈N in L2[0, 1] (CDMA
case) we can use the information set K = {2l}l∈N∪{0}. Then
the PAPR problem is strongly solvable, and it can be shown
that the optimal extension constant is CEX =

√
2 [24].

Example 2. For the Fourier ONS {eik · 2π}k∈Z in L2[0, 1]
(OFDM case), the same information set K = {2l}l∈N∪{0}
makes the PAPR problem strongly solvable. However, in this
case the optimal extension constant is yet unknown.

For OFDM, using the complex exponentials, and CDMA,
using the Walsh functions, the information sets K for which
the PAPR is strongly solvable need to be sparse, similar to
Examples 1 and 2, where the gaps grow larger and larger
[19], [25]. In [16] the following result was proved for OFDM:
If K ⊂ Z is a set such that the PAPR is strongly solvable for
K with some finite extension constant CEX then we have

lim
N→∞

|K ∩ [−N,N ]|
2N + 1

= 0,

that is, the relative density of the information set in [−N,N ]
needs to go to zero. A similar result was shown in [18], [23]
for the Walsh system: If K ⊂ N is a set such that the PAPR
is strongly solvable for K with some finite extension constant
CEX then we have

lim
N→∞

|K ∩ [1, N ]|
N

= 0.

This is true regardless of the specific value of the constant
CEX.

In view of the discouraging results about the density of
the information set, one could ask if it is too restricting to
require (2), i.e., the control of the peak value by a constant
CEX times the norm of a. Therefore, in [18] the concept of
weak solvability was introduced.
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Definition 2 (Weak solvability of the PAPR problem). For an
ONS {φk}k∈I in L2(µ) and a set K ⊂ I, we say that the
PAPR problem is weakly solvable if for all a ∈ `2(K) we
have

inf
b∈`2(K{)

∥∥∥∥∥∥
∑
k∈K

akφk +
∑
k∈K{

bkφk

∥∥∥∥∥∥
L∞(µ)

<∞. (7)

This is a weaker form of solvability compared to strong
solvability, as stated in Definition 1. The peak value of the
transmit signal

s =
∑
k∈K

akφk︸ ︷︷ ︸
=:A

+
∑
k∈K{

bkφk︸ ︷︷ ︸
=:B

(8)

is only required to be bounded and not to be controlled by
the norm of the sequence a = {ak}k∈K as in (2). We want to
show next that this gives only a very weak form of control of
the energy of the compensation signal. Since

‖b‖2
`2(K{)

≤ ‖s‖2L2(µ),

according to (3), and

‖s‖L2(µ) ≤ ‖s‖L∞(µ),

it follows that

‖B‖2L2(µ) = ‖b‖2
`2(K{)

≤ ‖s‖2L∞(µ). (9)

Hence, we see that the energy of the compensation signal is
bounded if the PAPR reduction problem is weakly solvable.
We further see that the finiteness of the energy of the com-
pensation signal is a necessary condition for the finiteness of
the PAPR: If the transmit signal s has a finite PAPR, then we
necessarily have ‖s‖L∞(µ) <∞ according of the definition of
the PAPR, and it follows from (9) that ‖B‖2L2(µ) <∞. Note
that the orthogonality of the carrier functions {φk}k∈I was
essential for the above calculations.

If for a given a ∈ `2(K) we have (7), then the corresponding
transmit signal s satisfies PAPR(s) < ∞. And conversely,
if for a given a ∈ `2(K) we can find a b ∈ `2(K{) such
that the transmit signal s satisfies PAPR(s) < ∞, then we
have (7). Thus, the PAPR problem is weakly solvable if and
only if for every information sequence a ∈ `2(K) there exists
a compensation signal B such that the transmit signal s, as
defined in (8), satisfies PAPR(s) <∞.
Remark 2. For a given a ∈ `2(K), the set of b ∈ `2(K{) such
that the norm in (7) is finite, is a convex set. Thus, finding
the infimum in (7) is in fact a convex optimization problem,
as soon as the set of b ∈ `2(K{) that make the norm in (7)
finite, is known. We will discuss this point in more detail in
Section VI.

Clearly, strong solvability always implies weak solvability.
In [18] the question was raised if maybe the converse implica-
tion is also true, that is, if maybe both concepts are equivalent.
In [19] this equivalence was proved for OFDM by showing
that weak solvability implies strong solvability. The question
remained whether it is also true for other ONS. The goal of
this work is to prove the equivalence of strong solvability and

weak solvability for general complete ONS. Since the proof
in [19] was tailored to the specific properties of the OFDM
ONS, we need to use a completely different approach here.

If for a given ONS {φk}k∈I in L2(µ) and set K ⊂ I
the PAPR problem is not weakly solvable, there exists an
information sequence a ∈ `2(K) such that the peak value
of the transmit signal cannot be bounded, i.e., (7) does not
hold. In Section VI we will study the structure of the set of
information sequences a for which (7) does not hold, and will
see that if the PAPR problem is not weakly solvable, “almost
all” information sequences lead to an unbounded signal s.

V. EQUIVALENCE OF SOLVABILITY CONCEPTS

The goal of this section is to show that for arbitrary
complete ONS, weak solvability, as stated in Definition 2,
implies strong solvability, as stated in Definition 1. Hence,
both concepts of stability are equivalent.

To this end, we start with the following simple lemma,
which gives a different but equivalent characterization of the
weak solvability concept.

Lemma 1. Let {φn}n∈N be an ONS in L2(µ) and K ⊂ N.
The PAPR problem is weakly solvable for {φn}n∈N and K if
and only if for all a ∈ `2(K) there exists a fa ∈ L∞(µ) such
that ∫ 1

0

faφk dµ = ak

for all k ∈ K.

Proof. “⇒”: Assume that the PAPR problem is weakly solv-
able for {φn}n∈N and K. Then we have

inf
b∈`2(K{)

∥∥∥∥∥∥
∑
k∈K

akφk +
∑
k∈K{

bkφk

∥∥∥∥∥∥
L∞(µ)

<∞.

It follows that there exists a b∗ ∈ `2(K{) such that for

fa =
∑
k∈K

akφk +
∑
k∈K{

b∗kφk,

where the convergence of the sums is in the L2(µ) norm, we
have ‖fa‖L∞(µ) <∞. Further, since {φn}n∈N is an ONS, we
have ∫

Ω

faφk dµ = ak

for all k ∈ K.
“⇐”: Let a ∈ `2(K) be arbitrary but fixed. According to

the assumption, there exists a fa ∈ L∞(µ) such that∫
Ω

faφk dµ = ak

for all k ∈ K. Since fa ∈ L∞(µ) ⊂ L2(µ), the series
expansion ∑

n∈N
cnφn (10)

with {cn}n∈N ∈ `2 converges to fa in the L2(µ) norm.
Since the convergence of the series (10) is unconditional, the
reordering ∑

k∈K

akφk +
∑
k∈K{

bkφk
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with ak = ck for k ∈ K and bk = ck for k ∈ K{ also
converges to fa. Since fa ∈ L∞(µ), this implies that∥∥∥∥∥∥

∑
k∈K

akφk +
∑
k∈K{

bkφk

∥∥∥∥∥∥
L∞(µ)

= ‖fa‖L∞(µ) <∞,

and it follows that the PAPR problem is weakly solvable for
{φn}n∈N and K.

In the next theorem our main result is presented.

Theorem 2. Let {φn}n∈N be a complete ONS in L2(µ) with
supn∈N‖φn‖∞ < ∞, and K ⊂ N, such that the PAPR
problem is weakly solvable. Then the PAPR problem is strongly
solvable, i.e., there exists a constant CEX = CEX(K, {φn}n∈N)
such that for all a ∈ `2(K) we can find a b ∈ `2(K{) such
that ∥∥∥∥∥∑

n∈K
anφn +

∑
n∈K{

bnφn

∥∥∥∥∥
L∞(µ)

≤ CEX‖a‖`2(K).

For the proof of Theorem 2 we need the following lemma
and the set

M(K) =

{
f ∈ L∞(µ) :

∫
Ω

fφn dµ = 0 ∀n ∈ K
}
.

Lemma 2. M(K) is a closed subspace of L∞(µ).

Proof. Clearly, M(K) has a linear structure, i.e., is closed
with respect to addition and multiplication with complex
scalars. It remains to prove thatM(K) is closed. Let {fm}m∈N
be an arbitrary sequence in M(K) that converges in L∞(µ).
That is, there exists a f∗ ∈ L∞(µ) such that limm→∞‖f∗ −
fm‖L∞(µ) = 0. We need to show that f∗ ∈ M(K). For
m ∈ N, n ∈ K we have∣∣∣∣∫

Ω

f∗φn dµ

∣∣∣∣ =

∣∣∣∣∫
Ω

f∗φn dµ−
∫

Ω

fmφn dµ

∣∣∣∣
=

∣∣∣∣∫
Ω

(f∗ − fm)φn dµ

∣∣∣∣
≤ ‖φn‖L∞(µ)‖f∗ − fm‖L∞(µ).

Letting m go to infinity, we see that∣∣∣∣∫
Ω

f∗φn dµ

∣∣∣∣ = 0

for all n ∈ K, which implies that f∗ ∈M(K).

In the proof of Theorem 2 we also employ the bounded
inverse theorem, which is a consequence of the open mapping
theorem [26, pp. 99]. We state the bounded inverse theorem
next for convenience.

Theorem 3 (Bounded Inverse Theorem). Let B1, B2 be two
Banach spaces. If T : B1 → B2 is a bounded linear operator
which is also bijective then the inverse operator T−1 : B2 →
B1 is bounded as well.

Now we are in the position to prove Theorem 2.

Proof of Theorem 2. For f ∈ L∞(µ) we define the set

[f ] =

{
g ∈ L∞(µ) :

∫
Ω

(f − g)φn dµ = 0 ∀n ∈ K

}
.

Let QK denote the quotient set L∞(µ)/M(K), consisting of
all the sets [f ], f ∈ L∞(µ). QK has a linear structure: we
have α[f ] = [αf ] and [f ] + [g] = [f + g]. Further,

‖[f ]‖QK = inf
g∈M(K)

‖f + g‖L∞(µ)

defines a norm on QK. Equipped with this norm QK becomes
a Banach space.

Next, we consider the operator RK : QK → `2(K), defined
by

(RK[f ])(k) =

∫
Ω

fφk dµ, k ∈ K.

For r ∈M(K) we have

‖RK[f ]‖`2(K) =

(∑
k∈K

∣∣∣∣∫
Ω

fφk dµ

∣∣∣∣2
) 1

2

=

(∑
k∈K

∣∣∣∣∫
Ω

(f + r)φk dµ

∣∣∣∣2
) 1

2

≤

(∑
k∈N

∣∣∣∣∫
Ω

(f + r)φk dµ

∣∣∣∣2
) 1

2

=

(∫
Ω

|f + r|2 dµ

) 1
2

≤ ‖f + r‖L∞(µ), (11)

where we used Parseval’s equality in the second to last line
and Hölder’s inequality in the last line. Since the left hand
side of (11) does not depend on r, it follows that

‖RK[f ]‖`2(K) ≤ inf
r∈M(K)

‖f + r‖L∞(µ)

= ‖[f ]‖QK .

This shows that the operator RK : QK → `2(K) is well-defined
and bounded. Further, from RK([f1] + [f2]) = RK[f1] +
RK[f2], [f1], [f2] ∈ QK, and RK(α[f ]) = αRK[f ], α ∈ C,
[f ] ∈ QK, we see that RK is a linear operator.

Let [f1], [f2] ∈ QK be arbitrary such that RK[f1] = RK[f2].
It follows that

(RK[f1])(k)− (RK[f2])(k) =

∫
Ω

(f1 − f2)φk dµ = 0

for all k ∈ K. Since {φn}n∈N is a complete ONS, this shows
that f1 = f2 µ-a.e., which in turn implies that [f1] = [f2].
Hence RK injective.

Since, according to the assumptions of the theorem, the
PAPR problem is weakly solvable, we have due to Lemma 1
that for every a ∈ `2(K) there exists an fa ∈ L∞(µ) such
that ∫

Ω

faφk dµ = ak, k ∈ K.

Hence, there exists a [fa] ∈ QK such that RK[fa] = a. Since
a ∈ `2(K) was arbitrary, we see that RKQK = `2(K). That is
RK is also surjective.

We established the fact that RK : QK → `2(K) is a bijective
bounded linear operator. As a consequence of Theorem 3, there
exists a bounded linear operator EK such that EK = R−1

K .
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Let ε > 0 and a ∈ `2(K) be arbitrary. Then we have
EK(a) = [fa] and

‖[fa]‖QK ≤ ‖EK‖`2(K)→QK‖a‖`2(K). (12)

Further, according to the definition of ‖ · ‖QK , there exists a
gε,a ∈ [fa] such that

‖gε,a‖L∞(µ) ≤ ‖[fa]‖QK + ε‖a‖`2(K). (13)

Since gε,a ∈ [fa] we have∫
Ω

gε,aφk dµ = ak, k ∈ K.

Combining (12) and (13), we see that

‖gε,a‖L∞(µ) ≤ (‖EK‖`2(K)→QK + ε)‖a‖`2(K).

Hence, for all ε > 0, the PAPR problem is strongly solvable
with extension constant ‖EK‖`2(K)→QK + ε. According to
Theorem 1, it follows that for all f ∈ F1(K) and all ε > 0 we
have

‖f‖L2(µ) ≤ (‖EK‖`2(K)→QK + ε)‖f‖L1(µ).

Taking the limit ε→ 0 on both sides of the inequality yields

‖f‖L2(µ) ≤ ‖EK‖`2(K)→QK‖f‖L1(µ)

for all f ∈ F1(K). Employing Theorem 1 again, we see that
the PAPR problem is strongly solvable even with extension
constant ‖EK‖`2(K)→QK .

VI. APPLICATION

Next, we apply the theory from the previous sections. We
analyze the question what happens if, for a given complete
ONS {φn}n∈N and set K ⊂ N, the PAPR problem is not
strongly solvable for any constant CEX. In this case, the PAPR
problem is also not weakly solvable, according to Theorem 2.

For a given complete ONS {φn}n∈N and set K ⊂ N, let

B(a) =

{
b ∈ `2(K{) :

∥∥∥∥∥∑
n∈K

anφn +
∑
n∈K{

bnφn

∥∥∥∥∥
L∞(µ)

<∞

}
.

We have B(a) = ∅ if and only if the PAPR problem is not
weakly solvable. In [19] the set

D = {a ∈ `2(K) : B(a) = ∅},

which contains all information sequences a ∈ `2(K) for which
the PAPR problem is not weakly solvable, was analyzed for
OFDM. It was shown that if for {ei2πk · }k∈Z and K ⊂ Z
the PAPR problem is not weakly solvable, then the set D
is a residual set, i.e., is big in a topological sense. Thanks
to Theorem 2 we can extend this result to general complete
ONSs.

Remark 3. B(a) is convex set. If B(a) 6= ∅ then we have for
arbitrary b1, b2 ∈ B(a) that bλ = (1 − λ)b1 + λb2 ∈ `2(K{).
Further, we have∥∥∥∥∥∑
n∈K

anφn +
∑
n∈K{

bλ,nφn

∥∥∥∥∥
L∞(µ)

=

∥∥∥∥∥∑
n∈K

anφn + (1− λ)
∑
n∈K{

b1,nφn + λ
∑
n∈K{

b2,nφn

∥∥∥∥∥
L∞(µ)

=

∥∥∥∥∥(1− λ)

(∑
n∈K

anφn +
∑
n∈K{

b1,nφn

)

+ λ

(∑
n∈K

anφn +
∑
n∈K{

b2,nφn

)∥∥∥∥∥
L∞(µ)

≤

∥∥∥∥∥(1− λ)

(∑
n∈K

anφn +
∑
n∈K{

b1,nφn

)∥∥∥∥∥
L∞(µ)

+

∥∥∥∥∥λ
(∑
n∈K

anφn +
∑
n∈K{

b2,nφn

)∥∥∥∥∥
L∞(µ)

<∞,

which shows that bλ ∈ B(a). The convexity of the set B(a)
and the L∞(µ)-norm implies that finding the infimum in (7)
is in fact a convex optimization problem as soon as B(a) is
given. However, in general B(a) is unknown.

Theorem 4. Let {φn}n∈N be a complete ONS in L2(µ) and
K ⊂ N such that the PAPR problem is not weakly solvable.
Then the set

D = {a ∈ `2(K) : B(a) = ∅}

is a residual set.

Proof. For M ∈ N let

ZM =

{
a ∈ `2(K) : ∃f ∈ L∞(µ), ‖f‖L∞(µ) ≤M

with
∫

Ω

fφk dµ = ak, k ∈ K

}
.

We have
D{ =

⋃
M∈N

ZM .

Assume that the PAPR problem is not weakly solvable.
Then there exists an a ∈ `2(K) such that B(a) = ∅. We will
show that

D{ = {a ∈ `2(K) : B(a) 6= ∅}

is a set of first category. According to the definition of a
residual set, this implies that D is a residual set.

We prove that, for all M ∈ N, the set ZM is nowhere dense
in `2(K). Then it follows that D{, as the countable union of
nowhere dense sets, is a set of first category.

We do a proof by contradiction: We assume that there exists
an M0 ∈ N such that ZM0

is not nowhere dense, and show
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that this assumption leads to a contradiction. According to the
assumption there exist an â ∈ `2(K) and a δ > 0 such that

ZM0 ∩Bδ(â)

is dense in Bδ(â), where

Bδ(â) = {a ∈ `2(K) : ‖a− â‖`2(K) < δ}

denotes the open ball at â with radius δ.
Let a ∈ Bδ(â) be arbitrary. Since ZM0 ∩Bδ(â) is dense in

Bδ(â), there exists a sequence {a(N)}N∈N ⊂ ZM0
∩ Bδ(â)

such that
lim
N→∞

‖a− a(N)‖`2(K) = 0.

Further, for every N ∈ N, there exists an fN ∈ L∞(µ) with
‖fN‖L∞(µ) ≤M0 such that∫

Ω

fNφk dµ = a
(N)
k , k ∈ K.

Recall that L1(µ) is a separable Banach space. Hence, the
closed unit ball in L∞(µ) is sequentially compact in the weak*
topology, according to the Banach–Alaoglu theorem [27, p. 68,
Th. 3.17]. It follows that there exists an f∗ ∈ L∞(µ),
‖f∗‖L∞(µ) ≤ M0 and a subsequence of the natural numbers
{nr}r∈N such that

lim
r→∞

∫
Ω

fnr
g dµ =

∫
Ω

f∗g dµ

for all g ∈ L1(µ). Thus, we have for k ∈ K that∫
Ω

f∗φk dµ = lim
r→∞

∫
Ω

fnrφk dµ

= lim
r→∞

a
(Nr)
k

= ak.

Hence, we see that a ∈ ZM0
. Since a ∈ Bδ(â) was arbitrary, it

follows that Bδ(â) ⊂ ZM0 , which also implies that â ∈ ZM0 .
According to the assumption of the theorem the PAPR is

not weakly solvable. Hence, there exists an ã ∈ `2(K) with
B(ã) = ∅. We set

α := â+
δ

2‖ã‖`2(K)
ã ∈ Bδ(â) ⊂ ZM0

.

Hence, there must exist an f1 ∈ L∞(µ), ‖f1‖L∞(µ) ≤ M0

such that ∫
Ω

f1φk dµ = αk, k ∈ K.

Since â ∈ ZM0 , there exists an f2 ∈ L∞(µ), ‖f2‖L∞(µ) ≤M0

such that ∫
Ω

f2φk dµ = âk, k ∈ K.

For

f3 :=
2‖ã‖`2(K)

δ
(f1 − f2)

we have

‖f3‖L∞(µ) =
2‖ã‖`2(K)

δ
‖f1 − f2‖L∞(µ)

≤
2‖ã‖`2(K)

δ
(‖f1‖L∞(µ) + ‖f2‖L∞(µ))

≤
4‖ã‖`2(K)M0

δ
,

which shows that f3 ∈ L∞(µ). For k ∈ K, we have∫
Ω

f3φk dµ =
2

δ
(αk − âk) = ãk, k ∈ K.

Therefore, we have ã ∈ ZM̃ , where M̃ is the smallest
natural number such that M̃ ≥ 4‖ã‖`2(K)M0/δ. It follows
that B(ã) 6= ∅, which is a contradiction.

VII. CONCLUSION

As discussed in the introduction, central questions in the
context of tone reservation are: What is the best possible
reduction of the PAPR? And: What is the optimal information
set that achieves this reduction? The answers to these questions
are difficult to obtain and generally unknown. By proving that
strong solvability is equivalent to weak solvability, i.e., that a
distinction between both concepts is not needed in general
multi waveform transmission schemes employing bounded
complete ONSs, we establish a first key result towards an-
swering the above questions.
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